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Is copper beneficial for COVID-19 patients?
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A B S T R A C T

Copper (Cu) is an essential micronutrient for both pathogens and the hosts during viral infection. Cu is involved
in the functions of critical immune cells such as T helper cells, B cells, neutrophils natural killer (NK) cells, and
macrophages. These blood cells are involved in the killing of infectious microbes, in cell-mediated immunity and
the production of specific antibodies against the pathogens. Cu-deficient humans show an exceptional sus-
ceptibility to infections due to the decreased number and function of these blood cells. Besides, Cu can kill
several infectious viruses such as bronchitis virus, poliovirus, human immunodeficiency virus type 1(HIV-1),
other enveloped or nonenveloped, single- or double-stranded DNA and RNA viruses. Moreover, Cu has the potent
capacity of contact killing of several viruses, including SARS‐CoV‐2. Since the current outbreak of the COVID-19
continues to develop, and there is no vaccine or drugs are currently available, the critical option is now to make
the immune system competent to fight against the SARS‐CoV‐2. Based on available data, we hypothesize that
enrichment of plasma copper levels will boost both the innate and adaptive immunity in people. Moreover,
owing to its potent antiviral activities, Cu may also act as a preventive and therapeutic regime against COVID-19.

Introduction

Copper (Cu) is an essential trace element for humans [1]. Dietary Cu
is absorbed in the small intestine and is rapidly appeared in the circu-
lation. In blood, Cu is distributed into a plasma pool associated with
larger proteins, an exchangeable fraction of low molecular weight
copper complexes, and a red cell pool that is partly nonexchangeable.
Cu plays an important role in the function and maintenance of the
human immune system. Cu is involved in the functions of T helper cells,
B cells, neutrophils, natural killer cells and macrophages. These cells
are involved in the killing of infectious microbes, cell-mediated im-
munity and production of specific antibodies. Cu deficiency symptoms
in human include deficiencies in white blood cells, bone and connective
tissue abnormalities, and immune reactions [2]. Adverse effects of in-
sufficient Cu on immune function appear most pronounced in infants
and older people. Infants with genetic disorders that result in severe Cu
deficiency suffer from frequent and severe infections [2,3]. During in-
fection, macrophages can attack invading microbes with high Cu load.
Cu is also elevated at sites of lung infection during infection with a wide
array of pathogens [4]. Cu deficiency and its excess levels can result in
abnormal cellular function or damages that given its central role in

host-pathogen interaction. The molecular interplay between the virus
and the cellular machinery manages Cu2+ flux [5]. Subtle alterations of
Cu homeostasis can occur in infectious diseases and results in toxic Cu
accumulation to eliminate pathogen [6]. Dietary Cu deficiency affects
both innate and adaptive immunity [7]. In fact, Cu-deficient humans
show an exceptional susceptibility to infections. Besides, Cu can kill
several infectious viruses such as bronchitis virus, poliovirus, human
immunodeficiency virus type 1(HIV-1), other enveloped or none-
nveloped, single- or double-stranded DNA and RNA viruses [2,8]. Cu-
induced viral killing may be mediated via ROS [9], and in this regard,
Cu+ and hydrogen peroxide play the essential roles [10]. The contact
killing of bacteria, yeasts, and viruses on metallic Cu surfaces is well
studied [11]. Cu supplementation was shown to restore the secretion
and activity of IL-2 in Cu-deficient animals via increased synthesis of IL-
2, which is crucial for T helper cell proliferation and NK cell cytotoxi-
city [12,13]. It is still not clear how copper deficiency alters ṕrotein
expression to produce observed pathologies. Transcript profiling, pro-
teomic analysis, and metabolite profiling, in both data-driven and tar-
geted formats, promise to provide more mechanistic details in animal
models that can be tested in human pathology. Cu also normalized
impaired immunological functions by modulating neutrophil activity,
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blastogenic response to T helper cell mitogens, the balance between
Th1 and Th2 cells [14].

Antiviral activity of Cu

Cu has the potent capacity to neutralize infectious viruses such as
bronchitis virus, poliovirus, human immunodeficiency virus type
1(HIV-1), and other enveloped or nonenveloped single- or double-
stranded DNA and RNA viruses [15]. Cu can disrupt the lytic cycle of
the Coccolithovirus, EhV86 with the increase in production of ROS
[15]. Cu2+ ions can inactivate five enveloped or nonenveloped, single-
or double-stranded DNA or RNA viruses. The virucidal effect of this Cu
is enhanced by the addition of peroxide as the mixtures of Cu2+ ions
and peroxide are more efficient than glutaraldehyde in activating Junin
and herpes simplex viruses [15]. Copper exposure to human cor-
onavirus 229E destroyed the viral genomes and irreversibly affected
virus morphology, including disintegration of envelope and dispersal of
surface spikes [16]. Cupric (II) chloride dihydrate showed the in-
hibitory effect on the replication of dengue virus, DENV-2 in a cell
culture study [17]. Cu-chelating agent (ATN-224) can reduce plasma-
mediated inhibition of herpes simplex virus-derived oncolytic viruses
(oHSV) indicating the importance of Cu2+ ions in this process. Thuja-
plicin-Cu chelates inhibit influenza virus-induced apoptosis of MDCK
cells and also inhibit the virus replication and release from the infected
cells [18]. Cu2+ ions inactivate herpes simplex virus by oxidatively
damaging its genome [15]. Cu surfaces can significantly reduce the
number of infectious influenza A virus particles. Cu ions can damage
the viral genomic DNA by binding and cross-linking between and
within strands of the genome [19]. Replication of influenza A virus was
inhibited by Cu by damaging the negative-sense RNA genome [19]. The
contact killing of microbes by Cu is mediated by the degradation of
genomic and plasmid DNA of microbes [20]. Human coronavirus was
rapidly inactivated on a range of Cu alloys Cu/Zn brasses were very
effective at lower Cu concentration that Cu(I) and Cu(II) moieties were
responsible for the inactivation which was enhanced by ROS generation
on alloy surfaces [21]. Novel coronavirus (SARS-CoV-2), responsible for
current COVID-19 pandemic is very sensitive to the copper surface
[22]. In a cell-based study, Cu2+ was shown to block papain-like pro-
tease-2, a protein that SARS-CoV-1 requires for replication [23,24].
Oxidized Cu oxide (CuO) nanoparticles (CuONPs) are widely used as
catalysts so that the ability of CuONPs to reduce virus application is
enhanced [25]. Nanosized Cu(I) iodide particles also show inactivation
activity against H1N1 influenza virus. Gold/Cu Sulfide core-shell na-
noparticles (Au/CuS NPs) exhibit variable virucidal efficacy against
human norovirus (HuNoV) via inactivation of viral capsid protein [25].

Hypothesis and argument

The current outbreak of the novel coronavirus SARS‐CoV‐2 (cor-
onavirus disease 2019, COVID-19), infected around the world. There
are nearly 1.9 million confirmed cases of coronavirus in 185 countries,
and at least 120,000 people have died, as of April 14, 2020.
Coronaviruses are enveloped, positive single‐stranded large RNA
viruses that infect humans, but also a wide range of animals.
Coronaviruses were first described in 1966 by Tyrell and Bynoe, who
cultivated the viruses from patients with common colds [26]. At pre-
sent, no vaccines exist that protect people against infections by SARS-
CoV-2, which causes COVID-19. As COVID-19 continues to wreak havoc
and many labs around the world are engaged in clinical trials involving
several drugs those affecting viral pathways such as remdesivir, arbidol
hydrochloride combined with interferon atomization, ASC09F plus
oseltamivir, ritonavir plus oseltamivir, lopinavir plus ritonavir, me-
senchymal stem cell treatment, darunavir plus cobicistat, hydroxy-
chloroquine, and methylprednisolone. The world is now desperate to
find ways to slow the spread of the SARS‐CoV‐2 and to find effective
treatments. People with weakened immune systems are always at an

increased risk of infectious diseases, and COVID-19 is no exception.
Several reports demonstrated that Cu deficiency weakens the human
immune response. Moreover, Cu deficiency can over-activate neu-
trophils and cause them to build up in the liver, which contributes to
inflammation. Most people get enough Cu from diet, supplements, and
water. Cu deficiency is rare and usually only occurs in seriously ill
people receiving intravenous (parenteral) nutrition that lacks Cu
[27,28]. The under-detection of Cu deficiency could be due to limita-
tions of screening using serum or urine samples. Cu deficiency is not
usually about a lack of Cu, but an imbalance of Cu and other minerals in
the diet that need to be supplemented with minerals and failure to do so
may inhibit their potential to produce Cu that can lead to susceptibility
towards infection. While severe Cu deficiency has adverse effects on
immune function, the effects of Cu insufficiency in humans are not yet
well known. In humans, the Cu status, tested by plasma Cu or cer-
uloplasmin or cuproenzymes, is strictly dependent by individual dietary
habits and health status, and ultimately plasma ceruloplasmin levels.
Serum level of Cu level is higher in pregnant women than that of non-
pregnant women. In Wenzhou, China a study of 71 patients showed that
those infected with COVID-19 have significantly lower total cholesterol
levels in serum compared to healthy controls [29]; however, it is not
known whether they had lowered Cu levels too. Several studies have
shown that lower total cholesterol level may be related in part due to
lower Cu level in adults [21,30,31]. Disruption of lipid rafts by cho-
lesterol depletion caused an enhancement of virus particles released
from infected cells and a decrease in the infectivity of virus particles
[32]. Plasma Cu may affect all these above processes. Cu oxide nano-
particles and Cu2+ ions are involved in the inhibition of viral entry and
replication, and degradation of mRNA and capsid proteins that are in-
volved in the viral life cycle. Cu deficiency is not always about a lack of
Cu but also could be the result of an imbalance of Cu and other minerals
in the diet that may often occur in an older population. In older people,
Cu deficiency can also result from malnutrition, malabsorption, or ex-
cessive zinc intake and can be acquired or inherited [28]. Copper de-
ficiency could lead a decreased number of circulatory blood cells with a
greater susceptibility towards infection in older people In a study of 11
men on a low-Cu diet (0.66 mg Cu/day for 24 days and 0.38 mg/day for
another 40 days) showed a decreased proliferation response of their
white blood cells when presented with an immune challenge in cell
culture [33]. Recent mechanistic studies support a role for Cu in the
innate immune response against infections [34]. In the condition of
specific intestinal malabsorption (such as celiac disease, bowel syn-
drome, long-term parenteral nutrition) or bone abnormalities or in well
genetically determined disease (Menkes' disease), Cu deficiency is se-
vere with dysfunctions on immune response, antioxidant activity and
bone metabolism [35]. Altered plasma and tissue levels of Cu in acute
or chronic inflammation reflect the changes in the metabolism of Cu
[36,37]. We hypothesize that copper supplementation can help fight
COVID19, especially in older people where marginal or severe defi-
ciency of Cu is a strong possibility. Because Cu and zinc are competi-
tively absorbed from the jejunum via metallothionein, high doses of
zinc (> 150 mg/day) can result in Cu deficiency in healthy individuals.
It is possible that people are may be at risk of severe SARS-CoV-2 in-
fection, who are also taking Zn supplement regularly. While high
copper levels can be poisonous, sites which are Cu limited can result in
stress responses by pathogens that warrants that the Cu levels must be
maintained optimally. At present, we do not have enough data or
knowledge concerning the effect of therapeutic supplementation of Cu
regarding the susceptibility and outcome of COVID-19. Dietary or
therapeutic Cu supplementations might affect host immune function
and metabolism of other micronutrients and prevent the severity of the
viral infection. Therefore, supplementation of Cu and correction of
mineral deficits may be beneficial for COVID-19 patients. Such
knowledge is essential to our understanding of how alterations in Cu
availability affect host-pathogen interactions and the course of infec-
tions, and it will likewise also results in the identification of new
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therapeutic strategies targeting host or microbial metal homeostasis
during infection. We thus urgently need more preclinical studies and
multi-centre prospective clinical trials in this area. Compilation of data
on toxicity due to copper excess and deficiency yielded a generalized
linear model that was used to estimate adverse responses depending on
copper dose or severity of copper limitation, as well as the duration of
copper misbalance [38]. This model indicates that for humans, the
optimal intake level for Cu is 2.6 mg/day. The current United States
Recommended Daily Intake is only 0.9 mg (USA Food and Nutrition
Board), whereas dietary study indicated that even 1.03 mg of Cu/day
might be insufficient for adult men [39]. The results of the third Na-
tional Health and Nutrition Examination Survey (NHANES III, 2003) in
the USA showed that the mean daily intake of Cu, depending on age,
was 1.54–1.7 mg/day for men and 1.13–1.18 mg/day for women. These
results imply that a large portion of the population may have in-
sufficient dietary copper intake and mild copper deficiency. We argue
that Cu supplementation may have a protection of people from COVID-
19.
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